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The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern

commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous

parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight

control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the

development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying

precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel

learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to

search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant

events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality

assurance data. All discovered anomalies are validated by a team of independent domain experts. This novel

automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated

exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the

discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial

aviation data are discussed.

I. Introduction

A S THE complexity and traffic density in theworldwide air transportation system increases, it is going to becomemore important than ever to
develop advanced techniques to help keep the fatal accident rate at the extremely low levels that they are today. A study conducted by The

BoeingCompany†† in 2012 showed that the fatality rate in that yearwas less than one per 1million departures.While this rate is exceedingly small,
many aviation experts are concerned that the unprecedented growth in air travel may create a situation where the current safety levels cannot be
sustained. This paper demonstrates a new knowledge discovery process, combining novel data mining algorithms developed specifically for
detecting precursors to aviation safety incidents that represent a significant advancement in the state of the art.

Current methods rely on human experts to create massive rule-based systems that detect known safety issues, based on whether a small set of
parameters exceed some predefined thresholds. This approach, based on known “exceedances,” allows analysts to quickly search large databases
for predefined issues. While exceedance-based analysis can also offer the ability to detect events while they are happening in an “online” or real-
time paradigm, “offline” analysis offers the important ability to allow an analyst to discover something new and explore the data to gain a more
holistic understanding of the event. Based on the result of this search, the analyst can recommend new training or operational procedures,
maintenance action, or another type of intervention to appropriately address the issue.

The approach that we are discussing here is fundamentally different because, rather than using human-generated rules to detect potential known
issues, we use anomaly detection techniques that scan large multivariate time-series databases to uncover statistical anomalies. Our knowledge
discovery process outputs a set of statistically significant anomalies from historical observed data. Not all of these anomalies are necessarily
significant from the aviation operations perspective. Further input from domain experts such as pilots and airlines safetymanagement teams helps
us categorize these anomalies, sometimes based on additional contextual information.Once these unique anomalies are discovered, there is a need
to determine the frequency of these occurrences in massive historical time-series databases. We have designed and adapted multivariate time-
series search algorithms to efficiently look for high-dimensional anomalies in these massive time-series datasets to address this need. The main
contributions to this paper are as follows: demonstrate the integration of novel anomaly detection algorithms into a well-formulated discovery
process, show that the process scales with large data, and highlight the types of anomalies that can be identified using this process.

II. Related Work

Anomaly detection is an active area of research in data mining and is widely used in many application areas such as finance, social networks,
electronic commerce, earth science, and aeronautics. Broadly speaking, anomalies can be detected using unsupervised, supervised, or
semisupervised techniques [1,2]. Unsupervised techniques, as the name suggests, do not require labeled points for detecting anomalies. In this
category, the most popular methods are distance-based and density-based techniques, in which anomalies are points in low-density regions or
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points farthest away from other points. In their seminal work, Knorr et al. [3] proposed a distance-based outlier detection technique based on the
idea of nearest neighbors. The nave solution has a quadratic time complexity because every data point needs to be compared to every other, in order
to find the nearest neighbors. To overcome this, researchers have proposed several techniques, such as the work by Angiulli and Pizzuti [4],
Ramaswamy et al. [5], Bay and Schwabacher [6], andBhaduri et al. [7]. Density-based outlier detectionmethods, on the other hand, flag a point as
an outlier if the point is in a low-density region. Using the ratio of training and test data densities as an outlier score, Hido et al. [8] have proposed a
new “inlier”-based outlier detection technique. Supervised techniques require labeled points of both normal and abnormal data for first building a
model (e.g., a classifier) and then testing if an unknown data point is an outlier. Themodel can be probabilistic, based onBayesian inferencing [9];
or deterministic, such as decision trees, support vector, machines, and neural networks [10]. Very recently, Srivastava [11] used supervised
methods for detecting aircraft having abnormal fuel consumption in a fleet commercial aircraft. Semisupervised techniques only require labeled
points of normal data. Therefore, they are more widely applicable than the fully supervised ones. These techniques build models of normal data
and then flag as anomalies all those points that do not fit themodel. The applications we are interested in havevery few labeled data points, andwe
therefore resort to unsupervised outlier detection techniques.

In the context of outlier detection from aviation data, several papers that use support vector machines have been published. Das et al. [12]
presented a technique for speeding up one-class support vectormachines (SVMs) using a sampling strategy. The authors showed that the proposed
technique is 15 times faster than the traditional one-class SVM while maintaining accuracy. Das et al. [13] have also developed an anomaly
detectionmethod that canworkwith both continuous and discrete sequences to demonstrate how some significant anomalies can be detected from
real aviation operational data. Autopilot systems allow an aircraft to be flown using the flight computers, and thereby may minimize pilot errors
during flight. However, the autopilot systems are controlled using switches in the cockpit that are manipulated by the pilot. SequenceMiner [14]
has been shown to detect abnormal switching from a learned model of normal switching. It helps an analyst to identify abnormal pilot inputs used
to control the autopilot system. Usefulness of these techniques for aviation safety has been studied in [15], in which the authors have applied these
data mining algorithms on real aviation datasets to get meaningful results. It is important to note that the choice of algorithms for anomaly
detection in aviation data is based on a number of factors such as the dataset at hand, the types of anomalies we are interested in finding, and the
scale of the problem. What is proposed in this paper is a systematic way of combining the strengths of these algorithms in a way that helps an
analyst identify new and existing precursors to aviation safety incidents. The algorithms that are part of our system will be discussed in detail
in Sec. IV.

The ultimate goal is to develop a process that can complement the existing state-of-the-art human-generated exceedance-based method to
uncover someoperationally significant events due to environmental,mechanical, and human factors issues in high-dimensionalmultivariate flight
operations quality assurance (FOQA) database. Although there exist a number of algorithms and publications that discuss the use of anomaly
detectionmethods for aviation safety, to the best of our knowledge, this is the first paper that describes the entire knowledge discovery pipeline for
aviation data using scalable datamining algorithms. This paper highlights the value of the proposed framework in unearthing safety-critical events
in aviation, particularly those that are related to human–automation interaction: a class of events that are becoming increasing important due to the
increasing complexity of automation onboard the aircraft. Our framework is the first in aviation analytics that allows automated discovery of such
precursors to aviation safety incidents.

III. Background

Theworld’s collection of aircraft and the airspace in which they operate, which wewill collectively refer to as “the airspace” from now on, is a
complex system that generates a large amount of data and, as such, is a challenging domain for data mining. The airspace contains many elements
that are in the critical path of operation, such as aircrafts, airports, people (flight crew), weather events, and routes. Each contains many
subcomponents. For example, each aircraft contains many subsystems and components, each of whichmay have experienced a variety of stresses
and maintenance actions. Each airport has multiple runways. These elements that make up the airspace interact in many complex ways. For
example, each flight is an aircraft operated by a flight crew to go from one airport to another airport via a route thatmay be set up ormay need to be
changed to avoid weather events. Of course, multiple flights operate in the airspace at any given time, and the flights need to coordinate to avoid
adverse events (incidents or accidents) while maximizing throughput and minimizing delays.

The airspace provides a very rich and challenging application area for data mining. The complexity described previously manifests itself in a
substantial amount and variety of data. There are many data types, only some of which are standard independent, identically distributed data that
mostmethods assume. Data can be temporal, spatial, or spatiotemporal. They can have different sampling rates across different dimensions. Some
of it is structured, such as the FOQA data, whereas other kinds of data, such as safety reports and maintenance reports, are unstructured. The data
have varying levels of fidelity and accuracy. Methods currently used in the aviation industry to analyze these data are unable to copewith most of
this complexity and are typically restricted to simple threshold checks over a small number of variables. While these methods run relatively
quickly and are easy to understand, we hypothesize that dataminingmethods that aremore capable of copingwith the complexity of airspace data
will find operationally significant anomalies that are not revealed by current methods.

We fortunately have an air transportation system that is extremely safe. Even though, ostensibly, the safety and efficiency of the air
transportation system seems like a solved problem, there is still room for improvement due to the potential threefold increase in air traffic in the
next few decades, as well as room for cost reduction through green aviation measures. Furthermore, adverse events, when they happen, can have
devastating consequences. Therefore, improved safety and efficiency based upon the use of various growing data sources remain important
objectives. Data miningmethods play a critical role in understanding the airspace, not only to correct problems that may be causing “near misses”
nowbut also to anticipate problems that are likely to getworse as theNextGenerationAir Transportation Systemcomes about due to increasing air
travel, increasing automation in aircraft, and other unforeseen factors.We expect that there are sequences of events hidden in airspace data that lead
to or could lead to an adverse event, andwe call these sequences precursors. It is critical to identify these precursors so that an on-time detection of
such a precursor in flight configuration or flight maneuver can alert the concerned authority to take necessary action to avoid the safety incident in
future flights.

IV. Aviation Safety Knowledge Discovery Process

In this section, we describe the entire proposed knowledge discovery process for analyzing aviation data, which wewill refer to as the aviation
safety knowledge discovery (AVSKD) process. Figure 1 presents a flowchart for this framework.We discuss each block in detail in the following
sections.
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A. Data and Preprocessing

1. Input Data

Raw FOQA data from each aircraft are collected and input to the AVSKD process. Each flight record is a matrix, with rows corresponding to
time samples and columns to observed parameters. The samples are collected at frequency of 1 Hz, and a typical flight from takeoff to landing
consists of 5000–6000 samples and 350 parameters. The data are heterogeneous in the sense that there are both discrete (binary and categorical)
and continuous parameters.

2. Data Preparation

The raw data for each flight are then passed through the data preparation module that performs several functions: feature selection, data type
segregation,missing data processing, noise filtering, and normalization. Depending on the type of safety study that is undertaken, aviation experts
help us choose the variables (feature selection) that are most relevant for the analysis. To avoid complications due to different aircraft types, all
flights for this study were chosen from the same fleet of aircraft. Once the variables are selected, the next subblock separates the discrete and
continuous variables so that different data summarization techniques can be applied to them independently. Flight-recorded data are often
contaminated with missing data, out-of-bounds variables, noisy recordings, amplitude spikes, etc., caused by sensor malfunctions or recording
medium errors. Our next subblock applies several data quality filters specifically developed for this purpose to clean the data. Derived parameters
may help to understand the hidden state of the aircraft based on some set of observed parameters, e.g., estimated aircraft speed margin above stall
speed based on flap settings, gross weight, and velocity. These parameters have specific advantages for tracking particular events. We construct
some derived parameters depending on our study and expert inputs. In the last step of the data preparation phase, we either normalize the
continuous features using z score or 0–1 normalization, or we convert for some categorical features (such as flap positions) into a binary
representation. The outputs of this block are two time series corresponding to selected discrete and continuous variables for each flight.

3. Feature Construction

Once the discrete and continuous parameters are separated, different techniques are applied to the data for feature construction. The continuous
data are quantized over a window length and in amplitude to convert them into a symbolic aggregate approximation (SAX)‡‡ representation
[13,16]. The steps taken in the data quality filtering mentioned previously ensure that the features are consistent for an effective conversion to the
SAX representation. The discrete parameters are handled by marking the on and off transitions between switch states with unique symbols and
concatenating the symbols into a sequencevectorwhile preserving the time ordering. TheSAXprocessing and discrete sequencing is primarily for
the multiple-kernel anomaly detection (MKAD) algorithm described in Sec. IV.B.

B. Anomaly Detection Algorithms

Once the data are cleaned and formatted as desired, knowledge discovery algorithms are applied. AVSKD is a very flexible platform, andmany
anomaly detection algorithms can be easily plugged in. To keep the discussion short, we discuss a couple of algorithms that we have used in our
example discovery process.§§

1. Multiple-Kernel Anomaly Detection

Multiple-kernel anomaly detection is an anomaly detection algorithm designed to run on heterogeneous datasets. Heterogeneity in data may
result from the presence of multiple attribute types, e.g., discrete and continuous. MKAD [13] is a “multiple-kernel”-based [17,18] approach,
where themajor advantage is themethod’s ability to combine information frommultiple data sources.Multiple-kernel learning takes advantage of
the mathematics of kernels, allowing users to derive new kernels from existing kernels, provided each kernel satisfies the “Mercer condition” that
the kernel function must be continuous, symmetric, and positive definite. In particular, the resultant kernelK can be a convex combination of all
kernels computed over multiple features; that is,

K�xi;xj� �
Xn
p�1

ηpK̂p�xi;xj�

with ηp ≥ 0 and

Xn
i�1

ηp � 1

Here, K̂p�xi;xj� represents the pth kernel computed for either discrete or continuous parts of data points xi and xj, and ηp are to weight the
individual kernels [in this paper, we always use ηp � 0.5 and n � 2 (unless otherwise specified), sincewe did not explore optimal kernel weights

Fig. 1 Aviation safety knowledge discovery process for identifying abnormal aviation events.

‡‡The source code of SAX can be obtained at ∼http://www.cs.ucr.edu/∼eamonn/SAX.htm [retrieved 2013].
§§Some or all these algorithms can be downloaded from https://c3.nasa.gov/dashlink/.
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or construct additional kernels in this paper]. There exist several classes of kernel that coincide with the Mercer kernel, such as radial basis
function, polynomial, bag of words, sigmoid, spline, graph-based, tree-based, and mismatch-based functions [19–21]. Although the current
MKAD approach is not limited to the choice of kernel functions, for the purposes of this study, the normalized longest common subsequences
(NLCS)-based [14] kernel function is used to model switching sequences for the process, where the order of the switching is important from an
operational perspective. Even though the same similarity function is being used for each kernel, it is important to note that the features have
completely different meanings. One feature is the switching of autopilot states, while the other is a discretized version of continuously recorded
variables. Since this is the case, the features cannot simply be combined into a single feature vector where the similarity function can be used to
form the final kernel; hence, the need for a multiple-kernel approach where the features can be combined in the kernel space. This kernel can be
defined as NLCS�X; Y�, where X and Y are two sequences of discrete symbols and

NLCS�X; Y� � jLCS�X; Y�j�������������
jXjjYj

p (1)

Given two sequences,X andZ,Z is a subsequence ofX if removing some symbols fromX producesZ.Z is a common subsequence of sequencesX
andY ifZ is a subsequence of both. The longest such subsequence is called the longest common subsequence (LCS) and is denoted byLCS�X; Y�,
and jLCS�X; Y�j is its length. This kernel is used because there exist standard operating procedures for flying the aircraft, and the sequence of the
pilot inputs (or actions) along with the measured quantities or parameters are extremely meaningful. NLCS is a useful metric for measuring
similarity between discrete sequences. These sequence features can be generated directly from discrete parameters or from SAX representations
[16] of continuous variables, as described in Das et al. [13].

The heart of MKAD is a one-class SVM model that constructs an optimal hyperplane in the high-dimensional feature space to separate the
abnormal (or unseen) patterns from the normal (or frequently seen) ones. This is done by solving the following optimization problem [22]:

min Q � 1

2

X
i;j

αiαjK�xi; xj� subject to 0 ≤ αi ≤
1

lν
;

X
i

αi � 1; ρ ≥ 0; 0 < ν < 1 (2)

where αi are Lagrange multipliers, l is the number of examples, ν is a user-specified parameter that defines the upper bound on the training error
(and the lower bound on the fraction of training points that are support vectors), ρ is a bias term, andK is the kernel matrix. Once this optimization
problem is solved, at least νl training points with nonzero Lagrangian multipliers (α) are obtained and the points for which fxi: i ∈ �l�; αi > 0g
are called support vectors. Once α is obtained, we can compute the decision function

f�z� � sign

�X
i

αi
X
p

ηpK̂p�z;xi� − ρ

�

to predict a positive or negative label for a given test vector z. Examples with negative labels are classified as outliers.
MKAD is highly scalable, and it can process large datasets very fast.We conducted a scalability studywherewewere able to process the data of

940,000 flights (equivalent to over 5 billion data points) in 12.5 h using distributed computing.

2. Index-Orca

Another unsupervised anomaly detectionmethod based on the distance to nearest neighbors as themeasure of “outlierness” [7,6] is also used in
this framework. For this method, the raw time-series data are presented as features to the algorithm after the appropriate data quality filters have
been implemented. The basic idea of distance-based outlier detection is to find, for each point x in the dataset, k other points that are closest to x by
computing the Euclidean distance between x and all the other points in the dataset. Then, the points are ranked (from highest to lowest) according
to the average distance (ormaximumdistance) to the k-nearest neighbors. This average distance is known as the outlier ranking function or outlier
score. The ranked list becomes the set of outliers in the order specified by the score. It is easy to verify that this computation has a computational
complexity ofO�n2�, wheren is the number of points in the dataset. To speed up this computation,Bay andSchwabacher [6] proposed the state-of-
the-art algorithm Orca, which uses a pruning strategy to quickly remove the normal points that are the bulk of the population. To implement
pruning, one needs to keep track of the smallest outlier score of the outlier set (called the cutoff c). Then, while testing a new point x, its nearest
neighbors are searched, andwhenever a neighbor of x is found for which the distance to x is less than c, then x is discarded from the pool of outlier
candidates.

More recently, Bhaduri et al. [7] proposed the new method Index-Orca (iOrca), which is at least an order of magnitude faster than Orca while
still guaranteeing correct results. The inefficiency of Orca is due to its slow update of cutoff (hence pruning). To overcome this, [7] proposes a data
reordering scheme such that 1) the cutoff is updated faster, and 2) for every point, the nearest neighbors are found quickly, often in constant time.

To update the cutoff faster, iOrca processes the outliers as early as possible. To achieve this, a randompointR is first selected as a reference point
fromD, and then the distance of all the other points inD fromR is calculated. This array of distances is the index, which is then used to reorder the
points inDwith increasing distance fromR. Instead of traversing through the data in the original order (or randomorder [6]), iOrca tests the points
along this index order. The rationale for this traversal is as follows. SinceR is chosen at random, it is likely thatRwill be one of the inlier points if
there are more inliers than outliers. Therefore, the points farthest fromRwill be more likely be the outliers. Since the points inD are processed in
decreasing distance toR, it is very likely that the outliers will be processed first, leading to a faster increase in the cutoff threshold. Reordering the
database for testing also allows iOrca to terminate without ever needing to process all the data:

Lemma IV.1 [stopping rule]:LetL be the index as described in this section. LetR be the reference point used to buildL. Let xt be any test point
currently being tested by iOrca. If

kxt − Rk � kR − xn−k�1k < c

then iOrca can terminate the execution immediately,where c is the current cutoff threshold, xn−k�1 is the true kth nearest neighbor ofR, and k · k is
the 2-norm of a vector.

Finally, the nearest neighbors of a test point are searched along the index order. Instead of starting the search from the beginning of the database
for every test point, iOrca starts the search from the location uponwhich it lies along the index, and then it gradually “spirals” out. Since the index
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prescribes a total ordering of the points projected along one dimension, it is likely that, for a test point xt, if xi is closer to xt than xj along the index,
then it will be the same even when the actual distances are also computed, i.e., if

jkxi − Rk − kxt − Rkj < jkxj − Rk − kxt − Rkj

then it is expected that

kxt − xik < kxt − xjk

As shown in Bhaduri et al. [7], iOrca is highly scalable and often produces a near-linear running time due to the index and early stopping criterion.
Both algorithms discover anomalies. They also decompose the overall anomaly score to reflect the contribution of each parameter toward that

score, thus providing a rough estimate of the most faulty parameter. These two methods previously described are not intended to solve the same
problem but rather to detect anomalies at different levels of abstraction. For instance, one important distinction betweenMKAD and iOrca is that
MKADworkswith the data compressed to single similarity comparisons for each flight (using SAX, sequencing, and the NLCS kernel), while iOrca
ingests all the raw time-series data logged from the flight data recorder and detects anomalies at each time point. SinceMKAD isworkingwith the
data at a lower resolution, it reports anomalies at the fleet level, i.e., it identifies anomalous flights,whereas iOrca ismore tuned to detect anomalies
within a flight because it analyzes the uncompressed time series directly.

C. Knowledge Discovery

1. Postprocessing

Both of these outlier detection algorithms output anomaly scores and the location of the anomalies. Depending on the type of algorithm used,
we can either identify an entire flight as abnormal (e.g., MKAD) or point out at which point in time the abnormality has been found (e.g., iOrca).
Depending on the size of the input database, the algorithms may discover hundreds to thousands of ranked anomalies, making it difficult for
domain experts to validate all of them.Wehave adopted avariant of the k-means algorithm that helps us to cluster the found anomalies based on the
contribution score of each parameter. Flights that share the same weighting on each of the anomalous parameters will be clustered together, and
therefore have similar anomalous flight characteristics. Then, instead of presenting all the anomalies to the domain expert, we only show them
some representative examples (such as the medoid flight) for each group.

Once anomalies of interest are discovered using any of these anomaly detection techniques, we are interested in knowing the frequency and
severity of those events in the entire dataset. Due to the statistical nature of the algorithms, not all events that have similar characteristics or hold
operational significance are guaranteed to be grouped together in the anomaly rankings. This raises the need for a tool to search for similar events
in the remaining dataset that a domain expert has identified as operationally significant from the list of anomalies. To do this, we use a tool called
Multivariate Time-Series Search (MTS) [23]. For each anomaly found earlier, this tool searches for similar anomaly evidences in the entire
database. TheMTS tool takes as input the data files (which can be very large), a query in the form of amultivariate time series defined over a small
subset of variables, and a threshold ϵ specifying the radius of the searchwith respect to the query. It returns all the location pairs in the form of (file
number, time instance) where amatch has been found. In the preliminary phase, an index is built on the dataset. This consists of selecting a random
point from the dataset (called the reference point) and then rearranging all the other points in the dataset according to distance to this fixed point.
This process is repeated separately for all the variables in the dataset, even before the query is provided. When the query q arrives in the form of a
multivariate waveform, first it is mapped to the “index space” by subtracting the reference point, and then a binary search is executed to find the
location of the transformed query q 0 on the index. Using triangle inequality, it is easy to show that the only candidates of interest are the tuples in
the range q 0 � ϵ, which guarantees no false dismissals. These candidates are then fetched from the dataset, and false positives are removed by
doing an exact calculation with q.

Similarly, for anomalies in discrete sequences, such as those found byMKADwith contributions from the discrete kernel, we pass the examples
to our tool sequence similarity search (S3). All examples are converted into sequences using the preprocessing step described earlier. The query
sequence is then compared against all sequences in the data using the NLCSmetric as the distance function described in Eq. (1). The distances are
sorted, and a user-defined cutoff is applied to determine the matches.

2. Validation

Once we find anomalous events using the knowledge discovery algorithms described previously, we validate them. There are three sources of
validation that are generally followed in the aviation industry. The first level of validation is with the help of experts in the field. For our case study,
we have sought help from four aviation experts with differing backgrounds. The first domain expert has over 30 years of experience in human
factors and aviation, text analysis, and statisticalmethodologies. The second expert is a retired commercial airline pilot of amajorU.S. carrier with
over 35 years of experience in flying Boeing 777 and 747 aircrafts. Our third expert is a researcher in human factors, with special emphasis on
aircraft automation and its effects on human performance. He is also a commercial pilot and flight instructor for single- andmultiengine aircrafts,
including the Airbus aircraft. Our fourth domain expert is also a researcher in the human factors, with emphasis in cognitive science and
psychology as applicable to spatial reasoning, decision making, risk assessment, communication, and skill acquisition and retention for air traffic
controllers, airline pilots, space mission controllers, and astronauts. He has over 35 years of experience in flying single-engine and multiengine
commercial aircraft, including certifications for Airbus A320 and A330, and Boeing B737.

As further validation, a repository of text reports, known as the text reports database (TRD), written by a member of the flight crew can
potentially be used to confirm the anomaly with the pilots depiction of the event. While the numeric FOQA data give us information as to what
happened, the text reports, if available, provide information as to why the event happened. A third way of validation is by interviewing the crew
themselves once an event is found. However, inmany cases, we do not have access to either the reports database or the crew, and sowemainly rely
on experts in the field for validation.

3. Reporting System

The final step in the AVSKD process is the report generation phase. We have developed a web-browser-compatible reporting system,¶¶ which
displays each anomalous flight and the top few parameters towhich it is deemed anomalous. For a given anomalous flight identifier, it reports the
following: 1) percentage contribution (discrete, continuous), graphical plot (contributing continuous parameters), 3) percentage contribution of
each continuous parameter, and 4) missing and extra discrete switches.

¶¶A sample of the report can be downloaded from https://c3.nasa.gov/dashlink/static/media/other/html_report.png.
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V. Discoveries

This section will discuss three examples of anomalies found by each of the detection algorithms. It is important to note that the choice of the
examples presented in this paper is based on the fact that both the domain experts and airline agreed that they are compelling incidents. Since this is
a discovery problem on unlabeled data, the results can be validated for ground truth only by domain experts. It can be argued that the current
threshold-based methods can be used to look at false-positive and false-negative rates to generate receiver operating characteristic curves, and
therefore tune the algorithm’s performance. However, this approach will only affect the algorithm’s ability to detect what is currently being
detected and not improve the algorithm’s ability to detect unknown operationally significant events. Two of the examples identified are due to
pilot-controlled maneuvers (see Sec. I). The other example involves a human–machine interaction scenario that is a significant challenge for the
pilots tomaintain awareness of themodes of the flight computer (see Sec. II).All three examples are important safety events. They appearedwithin
the top-ranked anomalies; however, the rank is determined by the statistical severity of the identified anomalous flights. In other words, anomalies
with operational significance may not always end up on the top of the list. In FOQA data, there are several natural sources of homogeneity; for
example, flights that have common origin or destination airports, city pair routes, tail numbers, or aircraftmodels, aswell as seasonal aspects (such
as flights within a month) can be grouped accordingly. Evenwithin a flight, there exist several phases, such as takeoff, cruise, and landing. In this
study, we partition the data based on departure or destination airport and analyze the takeoff and landing, respectively. The set of continuous
parameters considered include altitude, airspeed, roll, pitch, engine revolutions perminute (RPM),windspeed, estimated airspeed above stall, and
various control surface positions. The binary state parameters considered include landing gear, landing flap position, whether the autopilot and/or
flight director was engaged, and various vertical and lateral guidance system modes (see Table 1).

A. Fleet Level Anomalies

The following two anomalies were identified at the fleet level, meaning individual flights were labeled anomalous by the algorithm and not the
samples within the flight. Further analysis was performed in the postprocessing block to lookwithin the flight to determinewhat characteristics of
the flight were abnormal.

1. Drop in Airspeed

An anomaly was found in a flight by MKAD, using both the continuous and the discrete parameters listed at the beginning of Sec. Vas input,
and formatted as described in Sec. IV.B. The algorithmwas run on all available flights departing from a particular airport, identifying this flight as
an anomaly, which was ranked 11th out of 439 flights, with a runtime of 3 s. The higher-ranked anomalies were examined and found to have
various statistically anomalous characteristics (such as lower airspeeds, high windspeeds, or an uncommon departure direction); however, the
behavior in this flight was deemed to be of elevated interest by the domain experts.

Takeoff procedures typically allow aircraft to maintain an airspeed ofV2 � 10 kt, where V2 is the minimum speed that needs to be maintained
up to acceleration altitude. Acceleration altitude is the altitude [typically 3000 ft above ground level (AGL)] at which pitch is reduced slightly and
positive climb maintained, allowing acceleration through flap retraction speeds to 250 kt. In the flight shown in Fig. 2a, approximately 30 s after
takeoff, the aircraft began to experience a drop in airspeed. Given the gross weight and flap settings on the aircraft at the time, the aircraft
decelerated to only 12 kt above the estimated stall speed. The experts agreed that this flight was of interest, since it is highly unusual at this point in
the flight to experience such a drop in airspeed. This drop in airspeedwas a direct result of the pitch angle being held too high for too long, under the
conditions that both engines were running at maximum climb thrust and the autopilot was not yet engaged. The drop in airspeed continued for
another 30 s.At that time, a turnmaneuverwas executedwith a simultaneous correction of the pitch angle (see Fig. 2b), allowing the aircraft to start
increasing airspeed again.

Table 1 Automated continuous and discrete parametersa

Modes Parameters

Continuous Altitude, airspeed, roll, pitch, angle of attack, engine, RPM, windspeed, computed airspeed above stall, aileron, rudder, stabilizer, elevator, etc.
Discrete Landing gear, landing flap position, autopilot and/or flight director status various vertical and lateral guidance system modes

aFor further explanation of automated modes, please refer to the Airbus/Boeing flight crew training manuals at http://www.737ng.co.uk/
docs.htm [retrieved 2013].

Fig. 2 Drop in airspeed.
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To find similar incidents, we ran the MTS search tool on a particular airport that is known to the domain experts to have unusual takeoff
procedures. The airport had 9543 flights consisting of roughly 1 million data points. We have used only two parameters for search, altitude and
airspeed, and the aforementioned example as the query. Building the index took 21 min. (only takeoff phase). Searches for other similar events
took 0.08, 0.09, and 0.1 s for thresholds of 0.5, 1, and 2, returning 4, 17, and 69 hits, respectively. While visual inspection reveals similarity with
the query, we are currently validating them with our experts.

2. Mode Confusion

An anomaly was found in a flight byMKAD, using only the discrete parameters listed at the beginning of Sec. Vas input and 100%weights on
the discrete kernel, and it was formatted using the sequence preprocessing steps described in Sec. IV.B. An additional step was taken to ignore the
flight computer modes when both the autopilot and flight director were disengaged, since no action would be taken by the autopilot or pilot in
response to these mode states, and therefore they would not be relevant to this study. The algorithm was run on all available flights landing at a
particular airport with a runtime of 210 s. This anomaly ranked 13th out of 19,243 flights. Again, the higher-ranked anomalies were investigated
and found to be higher ranked due to modes in the data that are infrequently used (such as flight-path angle mode and altitude mode late in
approach); however, this particular event was found to be of high interest by the domain experts. The anomaly description follows:

On descent for approach, the aircraft was slightly above, yet on track, to intercept the glideslope (G/S). At approximately 2000 ft AGL, the
autopilot vertical guidance systemwas manually switched from open descent mode into altitude mode. The autopilot immediately reverted to the
default vertical speed mode. Manual selection of altitude mode was attempted repeatedly with the same result (see Fig. 3a). The modes listed in
Fig. 3a are defined as: G/S SYS1, glide slope vertical mode; VERT SPDMODE SYS1, vertical speed vertical mode; ALTMODE SYS1, altitude
hold vertical mode; OPENDESCENT SYS1, open descent vertical mode; AP1 ENGAGEDSYS1, autopilot 1 engaged; FD1 ENGAGEDSYS1,
flight director 1 engaged. The glideslope mode was engaged momentarily just before the autopilot was manually disengaged, at which time the
altitude modewas manually reselected. Figure 3b presents the corpus of vertical guidance modes for this particular flight, and it helps to identify
the potential anomalous sequences of switching initiated by the human. The notation for Loop 3 indicates the state sequence was repeated three
times. The anomalous mode transitions are shown in dashed lines in Fig. 3b. There are two important observations. First, we see a signature of
mode confusion where the operator repeatedly attempted to override mode C with mode B (see Fig. 3b); however, the flight computer did not
accept the command and autotransitioned back to mode C. If the aircraft had been closer to the selected altitude, the flight computer would have
accepted the command and the unnecessary mode switching could have been avoided. Second, this was followed by a sequence of undesired
actions (C → D → B) briefly before the pilot removed himself/herself from the undesired automation by manually disengaging the autopilot
resulting in mode Z. The domain experts identified these sequences of actions as potential evidence of mode confusion.

A

B

C

D

ZAltitude mode

1

2

3

4

5

6

Open descend
mode

Autopilot
off

F Anomalous flight event: A BCBCBC DB Z

Flare mode

E

Climb mode

Vertical speed
mode

Glideslope
mode

angle mode
Flight-path

G

Abnormal transition

Loop(3)

Undesired actions
Autotransition

signaturesMode confusion

Vertical Guidance Navigation Modes

a) Evidence of mode confusion with the unusual mode switching b) Conceptual diagram of the state space and path taken for the vertical
guidance system in this example

c) Confirmation of mode confusion with the recycling of the flight
director

Fig. 3 Mode confusion (Themodes listed in the figure above are defined as:G/S SYS1: glide slope verticalmode,VERTSPDMODESYS1: vertical speed
vertical mode, ALTMODE SYS1: altitude hold vertical mode, OPENDESCENT SYS1: open descent vertical mode, AP1 ENGAGED SYS1: autopilot 1
engaged, and FD1 ENGAGED SYS1: flight director 1 engaged.).
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At this point, the aircraft was hand flown to level off at the selected altitude. A new altitude of 2700 ft AGL was then selected, presumably to
program the flight computer for the missed approach maneuver in case of a go around. At this point, the flight director was manually reset, which
resulted in the default vertical speed mode being selected (see Fig. 3c). The aircraft was then manually flown using glideslope indicators and by
using the flight director in vertical speed mode. At 1000 ft AGL, the flight director was disengaged for the final time, and this was followed by a
visual landing.Repeated failed attempts to select the desired verticalmodes, subsequent disengagement of the autopilot, and recycling of the flight
director all suggest mode confusion, which added unnecessary workload to an already highly demanding situation.

A search for similar examples was performed on the entire dataset using S3. The sequence from the aforementioned example was used as the
query and compared against the full set of landing sequences in the data, with a running time of 127 min. One other flight was found with near-
identical behavior, while 12 other flights were found to have either the unusual switching behavior or the recycling of the flight director, but
not both.

B. Flight Level Anomalies: Unstable Approach

The last anomaly was identified at the flight level, meaning time samples within a flight were labeled anomalous by the algorithm. One
advantage in using this approach is that the algorithm can directly identify the abnormal characteristics within the flight, however there is a trade
off with runtime on larger datasets.

An anomaly was found in a flight by iOrca, using the set of continuous parameters listed at the beginning of Sec. Vas input, and formatted as
described in Sec. IV. The topN was chosen to be 1000 ≈ 0.2% of the full data, and k neighbors were set to the algorithm’s default value of 5. The
algorithm was run on all available flights landing at a particular airport with a runtime of 622 s using 519,025 time samples. This flight was
identified as an anomaly and ranked 22nd out of 2800 flights. Again, the higher-ranked anomalies were investigated and found to be statistically
unusual (higher airspeeds at lower altitudes); however, this particular eventwas found to be of notable interest by the domain experts. The anomaly
description follows:

For this flight, an aircraft was being flownmanually during the approachwithout the flight director, presumably for a visual approach, since the
reportedweather was clear. The aircraft was being flown slightly under a 3 deg approach path andwas on a base leg (the part of the approach that is
perpendicular to the runway) (see Fig. 4a for flight track). Late turn on approach compared to the average flight track for this runway. The aircraft
made the turn to final at 2.28miles to touchdown (TD) at 436 ft above ground level (see Fig. 4b). An unusually sharp turnwas executed to intercept
the final approach path at 2.28miles. During this turn, the aircraft was below 500 ft AGL, and the turn required a bank angle of 26 deg to intercept
the final approach course (see Fig. 4b). Such a turn so close to the airport is undesirable, since it does not allowmuch time for the aircraft to meet
stable criteria for landing, which could result in a go around. However, in this case, correction of the aircraft’s attitude allowed for stabilized
conditions to be met before touching down safely.

C. Value of Discoveries

The AVSKD process has helped in identifying important precursors to undesirable events. We are defining precursors as the combination of
conditions that increase the likelihood of potential unsafe situations in the future. In the aforementioned flight discussed in Sec. V.A.1, the drop in
airspeedmayhave led to a stallwarning. Similarly, themode confusion event discussed in Sec.V.A.2 could have lead to a failure to reach stabilized
landing criteria, and the unstable approach in Sec. V.B. might have resulted in a go around or hard landing. Insights derived from the precursors
identified by theAVSDKprocess can be brought to the attention of the airline’s training personnel and policymakers, and further understanding of
the frequency of these events can provide additional justification to initiate proactive operational changes to address safety-related issues.

The current FOQA program is designed to provide answers to questions that the domain experts have thought to ask, whereas in the AVSKD
process, we are not focusing on any particular group of anomalies, instead we “search for the unexpected” from the entire dataset and consult the
domain expert to validate each of them. Exceedance-based programs are likemechanical filters that need prior knowledge of the events before they
can be implemented. Looking at all of the data using the exceedance-based approach is not scalable, and therefore has been implemented only on
the portions of the flights as prescribed by the domain experts, leavingmany unexamined portions of the data. In our approach, the algorithms need
no prior knowledge of the events and do not examine only a subset of the data. Most of the algorithms presented in this paper have the ability to
handle large datasets, and therefore allow us to process the full dataset in a reasonable amount of time. It is also important to note that FOQA
programs are dependent on the validity of the thresholds defined by the domain experts, whereas our methods use statistical properties of the data
to rank the anomalies and find their severities. If multiple parameters interact in a counterintuitive way, the exceedance-based approach might
overlook a subset of those parameters if they are not predefined by the domain experts, whereas our multivariate models can take into account the
complex relationships and report their contributions to the anomalies.

Fig. 4 Unstable approach.
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VI. Conclusions

In this paper, a data mining and knowledge discovery process has been described that can detect precursors to aviation safety incidents. This
process was demonstrated on a large commercial aviation dataset by showing that it identified three operationally significant events that were
validated by experts. It is planned to extend this work to identify anomalous sequences across a set of flights that have a key characteristic in
common, such as the same aircraft, flight crew, or city pair. Work is also being done to identify and incorporate other sources of data that
correspond to these flights, such as radar track data and weather data, as these data will also be useful in identifying anomalies. Making this
framework even more scalable to facilitate larger-scale analysis is also currently being worked on. Finally, it should be noted that, although the
methods described are for the aviation domain, all these techniques are domain agnostic, and they can be used in any application area that exhibits
similar data properties and challenges. For example, in recommender systems, the task it to maximize the click-through rate by good quality
recommendations based on models learned from user browsing data. These models are learned on continuous data, and the discrete signals may
encode seasonal patterns that help in model segmentation and selecting the appropriate model for predicting user behavior. Anomaly detection in
this case relates to finding unique, noisy, or fraudulent users for further analysis or building better models.
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